"Математика, друзья, абсолютно всем нужна!"
Рабочая программа | Июнь 30, 2012,07:01
ФОРМЫ КОНТРОЛЯ
В соответствии с формами обучения на практике выделяют 3 формы контроля: индивидуальная, групповая и фронтальная.
Индивидуальный контроль.
При индивидуальном контроле каждый ученик получает свое задание, которое он должен выполнить без посторонней помощи. Такая форма контроля целесообразна в случае, если требуется выяснить индивидуальные знания, способности и возможности отдельных учащихся.
Такая форма контроля всегда планируется: учитель намечает, когда, кого, с какой целью спросить и какие для этого использовать средства.
Групповой контроль.
При проведении такого контроля класс временно делится на несколько групп (от 2 до 10 учащихся) и каждой группе дается проверочное задание. В зависимости от цели контроля группам предлагают одинаковые или разные задания.
Групповую форму контроля применяют:
При повторении с целью обобщения и систематизации учебного материала.
При выделении приемов и методов решения задач
При выявлении наиболее рационального решения задач или доказательства теорем.
Иногда групповой контроль проводят в виде уплотненного опроса.
Фронтальный (коллективный) контроль.
При фронтальном контроле задания предлагаются всему классу. В процессе этого контроля изучается правильность восприятия и понимания учебного материала, вскрываются слабые стороны в знаниях учащихся, обнаруживаются недочеты, пробелы, ошибки в работах и ответах учащихся. Это позволяет учителю вовремя наметить меры по их преодолению и устранению.
ТИПЫ КОНТРОЛЯ
В зависимости от того, кто осуществляет контроль за результатами деятельности учащихся, выделяют следующие три типа контроля:
Внешний (осуществляется учителем над деятельностью ученика)
Взаимный (осуществляется учеником над деятельностью товарища)
Самоконтроль (осуществляется учеником над собственной деятельностью)
Внешний контроль
В процессе контроля учителем знаний и умений учащихся выделяют следующие компоненты:
Уточнение целей изучения данного отрезка учебного материала и установление конкретного содержания контроля.
Различные способы выражения результатов контроля: оценка и отметка.
Выбор видов, форм, способов и средств контроля, соответствующих поставленным целям.
Взаимный контроль
Роль взаимного контроля качества и эффективности учебной деятельности школьников трудно переоценить.
Он содействует выработке таких качеств личности, как честность и справедливость, коллективизм. Взаимный контроль помогает также учителю осуществлять проверку знаний учащихся. В массовой школе сравнительно часто используется взаимная проверка организационной готовности к уроку (констатирующей взаимоконтроль выполнения домашнего задания) и частичная, эпизодическая взаимопроверка знаний учащихся (рецензирование ответов на уроке, рецензирование письменных работ). Систематическая же взаимная проверка знаний, умений, навыков применяется весьма редко. Остановимся на методике проведения этой проверки.
Каждый ученик получает карточку с вопросом, ответ на который он должен знать хорошо; на обороте карточки записаны фамилии нескольких учащихся и даты, когда они будут опрошены по этому вопросу. В каждый из указанных дней владелец карточки задает свой вопрос одному из учеников, в то же время он и сам должен ответить на вопрос, помещенный в карточке этого ученика. За день до проверки учащиеся предупреждают друг друга, на какие вопросы им придется отвечать. Взаимопроверка проводится обычно в последние три минуты каждого урока. За правильный ответ против фамилии (на обороте карточки) ученик ставит знак плюс, за неверный ответ или отказ отвечать – минус. Учитель периодически просматривает карточки взаимопроверки. В тех случаях, когда оказывалось много минусов, проводилась дополнительная взаимопроверка этих учеников во внеурочное время. В конце четверти проводится контрольный опрос всех учащихся, который позволяет выяснить не только общий уровень их знаний, но и насколько справедливо и строго каждый из них спрашивал своих одноклассников.
Взаимопроверка знаний значительно активизирует деятельность учащихся, повышает интерес к знаниям и даже нравится им. В ходе взаимного контроля раскрываются индивидуальные особенности детей, их взаимоотношения с товарищами.
Самоконтроль
На хорошем уроке всегда есть своя сверхзадача, которая сводится к формированию этих навыков и меняется в зависимости от темы урока. В одном случае она состоит в обучении приемам анализа, умению видеть закономерности, ставить вопросы, делать выводы.
В другом случае – в формировании критического отношения учащихся к результатам своей работы, требовательности к себе. Постоянного внимания учителя требует и проблема воспитания у учащихся веры в свои способности. Известно, что многие ученики боятся приступать к решению задач, алгоритм решения которых им неизвестен. Иногда проявляется страх перед трудностями, неумение преодолевать их самостоятельно. Выход здесь только один – прививать учащимся умения и навыки самоконтроля. Это важно с воспитательной, психолого-педагогической точки зрения. Ведь при этом ученики фактически участвуют в управлении своей собственной учебной деятельностью. Это порождает у них удовлетворенность своими занятиями, своей работой, позволяет им поверить в себя, в свои познавательные способности, открывает простор для творческой инициативы и самостоятельности. Укажем приемы формирования критического отношения учеников к результатам своей работы. Учащимся предлагается рассмотреть решения ряда примеров и оценить их. Обычно эти решения содержат типичные ошибки, которые надо обнаружить. Иногда требуется выяснить, верен ли ответ к заданию. Навыки самоконтроля можно развивать и на занимательных задачах, основанных на обычной житейской смекалке. Их полезно рассматривать как в младших, так и в старших классах. Эти задачи привлекают внимание всех учащихся, даже тех, которые не имеют особых успехов в математике.
Трудно удержать интерес учащихся к предмету, если преследуется единственная цель: научить школьников выполнять действия по данному образцу. Поэтому наряду с изучением алгоритмов возникает необходимость учить осознанному, творческому их применению. Приведем один распространенный прием такого обучения. Сразу после того, как учащиеся освоили все этапы алгоритма, им предлагается задача, которая решается по изученному алгоритму, но не самым рациональным способом. Более красивое решение получается, если не следовать алгоритму, а просто проанализировать условие задачи и сделать верные выводы.
На уроках геометрии иногда полезно “досочинить” задачу. Обычно для этого выбирают задачу из учебника на доказательство. Выписывают ее условие, а то, что надо доказать, придумывают сами.
Отметим еще несколько приемов работы учителя в формировании потребности в самоконтроле при обучении математике.
Давать определение иногда имеет смысл не в окончательном виде. Более содержательные беседы с классом получаются тогда, когда ученики предлагают свой вариант определения, который затем уточняется.
Почти все упражнения, которые предлагаются ученикам, сформулированы позитивно (доказать, найти). Появились также упражнения и другого типа (верно ли, проверить), но их очень мало. И совсем нет упражнений на опровержение утверждений, в то время как они чрезвычайно полезны.
Упражнения такого типа легко получить из задач позитивных, особенно на доказательство.
Если ученик дал письменное решение задачи (на доске или в тетради) с ошибкой, то в иных случаях не надо торопиться с выставлением оценки. Если есть возможность дать ему время на нахождение собственной ошибки, то ее нужно использовать. Если ошибка будет найдена, то оценку снижать не стоит.
Класс работает самостоятельно. Выборочно просматривая некоторые решения, учитель видит разнообразные ошибки, наиболее поучительные из них стоит показать всем учащимся класса.
На уроке предложена задача и сразу ответ к ней. У кого-то получился другой ответ. Не стоит спешить с помощью – окажем ее только тогда, когда самостоятельные попытки найти ошибку ни к чему не привели.
Весьма рискованный, но заслуживающий внимания прием. Учитель берется с ходу решать достаточно сложную задачу, причем на доске. Если ее и удается решить, то вряд ли наилучшим способом. Ученики еще раз убеждаются, что первый вариант решения не всегда является наилучшим.
В результате проведения описанной работы у учащихся начинает формироваться потребность в самоконтроле.
Обычным способом организации самоконтроля в процессе обучения математике является указание ответа (известного заранее или сообщаемого учениками друг другу). Некоторым учащимся в случае трудоемких заданий вполне достаточно свериться с окончательным результатом. Другим требуется дать промежуточные ответы. Это помогает им самостоятельно выполнять учебные задания даже в тот момент, когда у них еще не выработаны прочные навыки.
Среди учебных заданий, стимулирующих самоконтроль в работе учащихся, определенное место занимают задания с программированным контролем. Такие задания позволяют увеличить интенсивность самостоятельной учебной работы учащихся, удобны для организации фронтальной работы и коллективного обсуждения полученных индивидуальных результатов.
Последовательно работая над привитием умений, связанных с контролем и самоконтролем в математической деятельности учащихся, можно добиться заметных результатов. При этом растет общая математическая культура школьников, их работы и ответы становятся более грамотными.
МЕТОДЫ КОНТРОЛЯ
Среди методов контроля выделяют:
устную проверку,
проверку письменно-графических работ,
проверку практических работ.
Устная проверка
Устная проверка организуется по-разному, в зависимости от ее цели и от содержания проверяемого материала. Среди целевых установок проверки можно выделить следующие: проверить выполнение домашнего задания, выявить подготовленность учащихся к изучению нового материала, проверить степень понимания и усвоения новых знаний. В зависимости от содержания она проводится по материалу предшествующего урока или по отдельным разделам и темам курса.
Методика устной проверки включает в себя две основные части:
составление проверочных вопросов и их задавание,
ответ учащихся на поставленные вопросы.
Составление проверочных вопросов и заданий - важный элемент устной проверки. Качество вопросов определяется их содержанием, характером выполняемых учащимися при ответе на вопросы умственных действий, а также словесной формулировкой.
При составлении вопросов всегда исходят из того, что проверять следует те знания, которые являются основными в данном курсе или относительно трудно усваиваются учащимися или которые необходимы для успешного усвоения дальнейших разделов и тем курса. На подбор вопросов оказывает влияние вид проверки: для уточнения содержания вопросов для текущей проверки необходим анализ связей изучаемого материала с ранее пройденным, а для тематической и итоговой проверки - выделение ведущих знаний и способов оперирования ими. Причем устную проверку считают эффективной, если она направлена на выявление осмысленности восприятия знаний и осознанности их использования, если она стимулирует самостоятельность и творческую активность учащихся.
Качество вопросов определяется характером умственных действий, которые выполняют учащиеся при ответе на вопрос. Поэтому среди проверочных заданий выделяют вопросы, активизирующие память (на воспроизведение изученного), мышление (на сравнение, доказательство, обобщение), речь. Большое значение имеют проблемные вопросы, которые заставляют применять полученные знания в практической деятельности.
Качество устной проверки зависит от подбора, последовательности и постановки вопросов, которые предлагаются, во-первых, каждый вопрос должен быть целенаправленным и логически завершенным, а во-вторых, должен быть предельно сжатым, лаконичным и точным.
Второй составной частью устной проверки является ответ учащегося на вопросы. В дидактической литературе выделяются два условия качественного выявления знаний ученика:
Ученику никто не мешает (учитель и класс комментируют ответ потом).
Создается обстановка, которая обеспечивает наилучшую работу его интеллектуальных сил.
Прерывать ученика можно только в том случае, если он не отвечает на вопрос, а уклоняется в сторону. При оценке ответа ученика обращают внимание на правильность и полноту ответа, последовательность изложения, качество речи.
Приемы устной проверки используются на различных этапах урока. Выбор тех или иных приемов во многом предопределяется целью и логикой урока.
Проверка письменно – графических работ
Вторым широко применяемым методом контроля в обучении математике является проверка письменно-графических работ. Этот метод имеет свои качественные особенности: большая объективность по сравнению с устной проверкой, охват нужного числа проверяемых, экономия времени. Применение письменных работ используется для:
проверки знания теоретического материала
умения применять его к решению задач
контроля сформированных навыков
В методике письменно – графических работ выделяют четыре основных этапа, которым надо уделять внимание, это подготовка, организация, проведение, анализ результатов.
При подготовке нужно: вычленить цель проверки, отобрать содержание объектов проверки, составить проверочные задания. Большую помощь при этом оказывают учебно- методические пособия “Книга для учителя”, “Дидактические материалы”, образцы проверочных работ в журнале “Математика в школе”.
При организации проверочной работы учащимся сообщается – в каких тетрадях ее выполнять, какие задания им предназначены, как озаглавить работу, как оформить решение, время выполнения работы. При этом следить за самостоятельностью выполнения работы каждым учеником.
Анализирование ответов учащихся эффективно тогда, когда оно проводится по определенным схемам (схемам поэлементного анализа). Тщательно проведенный анализ позволяет глубоко изучить пробелы и достижения отдельных учеников, выделить типичные ошибки и основные затруднения учащихся, изучить причины их появления и наметить пути их устранения.
Проверка практических работ
С помощью этого метода получают данные об умении учащихся применять полученные знания при решении практических задач, пользоваться различными таблицами, формулами, чертежными и измерительными инструментами, приборами.
Учитель получает отчет ученика, в котором приводится только результат или схематически описаны план практической работы и ее результаты. Это несколько затрудняет проверку и оценку каждого действия ученика. Поэтому на практике в проверочном задании приводиться алгоритм его выполнения, что позволяет осуществить такую проверку правильности действий ученика. Все работы проверяются, но оцениваются по-разному, по результатам обзорных работ оценки выставляются в журнал, по результатам тренировочных работ можно выставить лишь положительные оценки.
СРЕДСТВА ОСУЩЕСТВЛЕНИЯ КОНТРОЛЯ
В настоящее время создаются и распространяются такие средства, которые не требуют больших затрат времени на подготовку, проведение и обработку результатов. Среди них выделяют машинные и безмашинные средства проверки.
Безмашинные средства проверки
Среди безмашинных средств проверки наиболее распространены в практике работы школы устный опрос учащихся у доски, проверка учителем тетрадей с домашним заданием, математический диктант, самостоятельная и контрольная работы.
Проверка домашнего задания
Роль домашних заданий практически обесценивается, если не налажена их проверка. Учителя практикуют разные формы учета. Это и устный опрос у доски или с места по домашнему заданию, и короткая письменная работа, но, прежде всего это непосредственная проверка задания в тетрадях – фронтальная при обходе класса в начале урока и более основательная, выборочная во внеурочное время.
Проверку домашнего задания можно осуществлять в различных формах. Рассмотрим наиболее распространенные приемы проверки домашнего задания.
I прием.
У доски готовится один учащийся, класс в это время занят другой работой. Затем ученик отвечает, а остальные слушают и задают вопросы.
II прием.
Отличается от первого тем, что к доске вызывается не один, а все учащиеся. Этот прием позволяет экономить время урока. Этот широко распространенный в школе прием называют уплотненным опросом.
Необходимо отметить недостатки этих приемов:
Вызванным учащимся выделяется время на подготовку к ответу. Остальным не дается время, чтобы продумать ответы на поставленные вопросы.
Если вызванные учащиеся отвечают плохо, то уплотненный опрос затягивается на 15-20 минут, а других учащихся учитель вызвать не может, так как они не готовились к ответу.
Кроме таких форм контроля выполнения домашнего задания существуют и другие.
Самопроверка по образцу применяется на первом уроке после объяснения нового материала. Образец решения домашней работы записан на доске заранее. Учащиеся рассматривают решение образец и устно комментируют его, тетради у всех закрыты. Затем ребята открывают тетради и проверяют свои работы по образцу, подчеркивая ошибки. Этот способ развивает внимание и выявляет ошибки с помощью образца.
Взаимопроверка с помощью образца используется на следующем уроке. В этом случае учащиеся проверяют домашнюю работу своего соседа тоже по образцу. Как и в первом случае, окончательно тетради проверяет учитель.
Математический диктант
Математический диктант может заменить опрос по теме, заданной для повторения. Его продолжительность обычно 10-20 минут. Он представляет собой систему вопросов, связанных между собой.
Текст диктанта может быть:
написан на плакате.
спроецирован на доску с помощью мультимедийного проектора.
зачитан учителем.
Существует еще такая разновидность диктанта, как математический диктант с графической записью ответа.
Приведем методику проведения диктанта.
Учитель полностью зачитывает текст, а учащиеся слушают, не делая записей.
Учитель читает текст по фразам, делая паузы от одной до четырех минут, чтобы дать учащимся возможность выполнить задание.
Когда все задания выполнены, учитель снова читает весь текст с небольшими остановками (это дает учащимся возможность что-то исправить и сделать дополнения).
Правильные ответы записываются на доске. Ученики могут проверить диктант самостоятельно у соседа по парте.
В 5-7 классах все работы проверяются учителем. Этот метод проверки реже используется в старших классах.
С помощью математического диктанта можно проверить знание учащимися формулировок, определений, свойств, теорем, формул, умения и навыки в их использовании.
Организация самостоятельных работ
При изучении математики важно, чтобы учащиеся не только знали теоретический материал, но и умели применять его к решению задач и упражнений, обладали бы рядом навыков (вычислительными навыками, умениями преобразовывать выражения и т.д.). Эти умения и навыки могут быть по настоящему проверены только в письменной работе. Обычно самостоятельные работы проводятся после коллективного решения задач новой темы и предшествуют контрольной работе по этой теме.
При проведении самостоятельной работы учитель сталкивается со следующими затруднениями:
Дети заканчивают работу не одновременно, поэтому целесообразно включать в работу дополнительные задания для тех, кто работает быстрее.
Трудно подобрать задания одинаково посильные всем учащимся.
Трудно организовать проверку самостоятельных работ.
Организация контрольных работ
Контрольная работа может быть кратковременной и долговременной.
Перед проведением контрольной работы необходимо определить объект контроля, цель предстоящей работы и средства контроля. Они должны быть сообщены учащимся.
В зависимости от вида заданий нужно продумать, каким образом ученик должен их оформить.
Учитель должен продумать, что он отнесет к недочетам, а что к ошибкам. Из этого будет складываться оценка. Критерии оценки хотя бы в общих чертах должны быть известны учащимся.
Контрольная работа должна быть посильной для всех учащихся без исключения. Сильным ученикам нужно дать задания труднее.
Каждой контрольной работе должна предшествовать самостоятельная работа с аналогичными упражнениями.
Анализ контрольной работы необходимо проводить сразу, для этого необходимо завершать работу за несколько минут до звонка. Желательно фрагменты решения разобрать сразу после написания работы, потому что на следующий день или позже учащиеся уже теряют интерес к содержанию работы и многие интересуются только оценкой.
Обязательно нужно проводить количественный и качественный анализ контрольной работы.
Данные количественного анализа удобно представлять в виде таблицы
Класс |
Количество учащихся в классе |
Количество учащихся, выполнивших работу |
Оценка |
Правильно выполненные задания |
||||||||
5 |
4 |
3 |
2 |
1 |
1 |
2 |
3 |
4 |
5 |
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
Но данные количественного анализа не позволяют установить уровень владения материалом конкретного ученика.
Такую возможность представляет качественный анализ. Информация, которая подвергается качественному анализу, должна включать данные о выполнении каждого задания предложенной контрольной работы каждым учеником класса.
Такие данные можно фиксировать в таблице.
Фамилия учащегося |
1 задание |
|||
Виды ошибок |
||||
|
|
|
|
|
Иванов |
+ |
- |
+ |
- |
Петров |
- |
+ |
- |
+ |
Содержание основной части таблицы свидетельствует об основных ошибках учащихся, допущенных при выполнении отдельных заданий.
Анализ результатов контрольной работы может способствовать получению выводов об особенностях своей деятельности по организации усвоения школьниками учебного материала.
Машинные средства проверки
Для контроля знаний учащихся используют персональный компьютер. Для контроля знаний учащихся удобно применять типовые расчеты, которые включают наиболее характерные задания базового курса математики.
Перечислим некоторые преимущества использования компьютера для создания типовых расчетов:
Однотипные задания печатаются в любом количестве неповторяющихся вариантов.
Варианты, созданные с помощью компьютерных программ, проверяются значительно быстрее, так как компьютер может предоставить ответы к каждому заданию.
Компьютерные типовые задания удобны для отработки необходимых навыков с отстающими учащимися (учитель не тратит время на подбор однотипных заданий для отработки определенных навыков).
Учащиеся с огромным интересом работают с такими заданиями, особенно, если карточка с заданием индивидуальна и ученик может работать в ней.
Рабочая программа | Июнь 29, 2012,07:08
Образовательный стандарт основного общего образования по математике
Изучение математики в основной школе направлено на достижение следующих целей:
овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
развитие таких качеств личности, как ясность и точность мысли, логическое мышление, пространственное воображение, алгоритмическая культура, интуиция, критичность и самокритичность;
формирование представлений об идеях и методах математики как универсального языка науки и техники, средстве моделирования процессов и явлений;
воспитание средствами математики культуры личности, знакомство с жизнью и деятельностью видных отечественных и зарубежных ученых-математиков, понимание значимости математики для общественного прогресса.
Реализация указанных целей достигается в результате освоения следующего содержания образования
Обязательный минимум содержания основных образовательных программ
Арифметика
Натуральные числа. Десятичная система счисления. Арифметические действия над натуральными числами. Степень с натуральным показателем. Делимость натуральных чисел. Признаки делимости на 2, 3, 5, 9, 10. Простые и составные числа. Разложение натурального числа на простые множители. Наибольший общий делитель и наименьшее общее кратное. Деление с остатком.
Целые числа: положительные, отрицательные и нуль.
Обыкновенная дробь. Свойства дробей. Сравнение дробей. Арифметические действия с обыкновенными дробями. Нахождение части от целого и целого по его части. Десятичная дробь. Сравнение десятичных дробей. Арифметические действия с десятичными дробями. Представление десятичной дроби в виде обыкновенной дроби и обыкновенной в виде десятичной. Рациональные числа. Модуль (абсолютная величина) числа. Сравнение рациональных чисел. Арифметические действия над рациональными числами. Степень с целым показателем.
Числовые выражения, порядок действий в них, использование скобок. Законы арифметических действий: переместительный, сочетательный, распределительный. Числовые равенства и их свойства. Числовые неравенства и их свойства. Пропорция и ее свойства. Проценты. Нахождение процента от величины, величины по ее проценту. Текстовые задачи (на движение, работу, стоимость, смеси и др.). Решение текстовых задач арифметическим способом.
Квадратный корень из числа и его свойства. Корень третьей степени. Понятие о корне n-ой степени из числа, степени с дробным показателем.
Округление чисел. Прикидка и оценка результатов вычислений. Запись чисел в стандартном виде (с выделением множителя – степени десяти). Понятие об иррациональном числе. Иррациональность числа. Десятичные приближения иррациональных чисел. Измерение длины отрезка. Действительные числа. Метрические системы единиц: длины, площади, объема, массы, времени.
Алгебра
Алгебраические выражения. Буквенные выражения (выражения с переменными). Допустимые значения переменных, входящих в алгебраические выражения. Числовое значение буквенного выражения.
Свойства степеней с целым показателем и их применение в преобразовании выражений. Многочлены. Сложение, вычитание, умножение многочленов. Формулы сокращенного умножения: квадрат суммы и квадрат разности, куб суммы и куб разности. Формула разности квадратов, формула суммы кубов и разности кубов. Разложение многочлена на множители. Вычисления значений арифметических и алгебраических выражений.
Квадратный трехчлен. Выделение полного квадрата в квадратном трехчлене. Разложение квадратного трехчлена на линейные множители. Многочлены с одной переменной. Степень многочлена. Корень многочлена. Алгебраические дроби. Действия с алгебраическими дробями. Преобразования алгебраических выражений.
Уравнения и неравенства. Уравнение с одним неизвестным. Корень уравнения. Линейное уравнение. Квадратное уравнение: формула корней квадратного уравнения, соотношения между коэффициентами и корнями. Решение рациональных уравнений. Примеры решения уравнений высших степеней; методы замены переменной, разложения на множители. Примеры уравнений с несколькими неизвестными. Система уравнений. Решение системы. Система двух линейных уравнений с двумя неизвестными. Методы подстановки и алгебраического сложения. Примеры решения нелинейных систем. Примеры решения уравнений в целых числах. Неравенство с одним неизвестным. Решение неравенства. Линейные неравенства с одним неизвестным и их системы. Квадратные неравенства. Примеры решения дробно-линейных неравенств. Примеры доказательств алгебраических неравенств. Составление уравнений, неравенств и их систем по условиям задач. Решение текстовых задач алгебраическим методом.
Координаты.
Изображение чисел точками координатной прямой. Геометрический смысл модуля числа. Числовые промежутки: интервал, отрезок, полуинтервал, луч. Формула расстояния между точками координатной прямой.
Декартова система координат на плоскости. Координаты точки на плоскости. Уравнение прямой, уравнение окружности с центром в начале координат. Графическая интерпретация уравнений и неравенств с двумя неизвестными и их систем. Примеры графических зависимостей и функций, отражающих реальные процессы (в том числе, периодические – синус; показательный рост).
Числовые Функции.
Понятие функции. Область определения функции. Способы задания функции. График функции, возрастание и убывание функции, наибольшее и наименьшее значения функции.
Прямая пропорциональность, линейная функция и ее график, геометрический смысл коэффициентов. Обратная пропорциональность и ее график (гипербола).
Квадратичная функция и ее график (парабола). Координаты вершины параболы, ось симметрии. Степенная функция с натуральным показателем и ее график.
Графики функций: корень квадратный, корень кубический, модуль.
Использование графиков функций для решения уравнений и систем.
Использование преобразований графиков (параллельный перенос вдоль осей координат и симметрия относительно осей).
Числовые последовательности и способы их задания.
Арифметическая и геометрическая прогрессии. Формулы общего члена арифметической, геометрической прогрессий, суммы первых нескольких членов арифметической и геометрической прогрессий. Cложные проценты.
Элементы логики, комбинаторики, статистики и теории вероятностей.
Множество. Элемент множества, подмножество. Объединение и пересечение множеств. Диаграммы Эйлера. Понятие об аксиомах и теоремах, следствиях, необходимых и достаточных условиях, контрпримерах; доказательстве от противного. Примеры решения комбинаторных задач: перебор вариантов, правило умножения. Представление данных в виде таблиц, диаграмм, графиков. Средние результатов измерений.
Понятие и примеры случайных событий. Частота события, вероятность. Равновозможные события и подсчет их вероятности. Представление о геометрической вероятности.
Геометрия
Геометрические формы, фигуры и тела.
Точка, прямая и плоскость. Части прямой (отрезок, луч), угол, ломаная. Отрезок прямой как кратчайший путь между двумя точками. Расстояние. Длина отрезка. Угол. Прямой угол. Острые и тупые углы. Вертикальные и смежные углы. Биссектриса угла. Градусная мера угла. Параллельность и перпендикулярность прямых. Признаки и свойства. Фигуры на плоскости. Многоугольники. Виды многоугольников. Выпуклые многоугольники. Окружность и круг. Длина ломаной, периметр многоугольника. Осевая и центральная симметрия фигур. Понятие о геометрическом месте точек. Наглядные представления о пространственных телах: кубе, параллелепипеде, призме, пирамиде, шаре, сфере, конусе, цилиндре. Примеры сечений. Примеры разверток.
Треугольник.
Внутренние и внешние углы треугольника. Стороны треугольника, его медианы, биссектрисы, высоты. Остроугольный, прямоугольный и тупоугольный треугольники. Равнобедренный треугольник, его свойства и признаки. Равносторонний треугольник. Признаки равенства треугольников. Неравенство треугольника. Перпендикуляр и наклонная. Сумма углов треугольника. Сумма углов выпуклого многоугольника. Теорема Фалеса. Средняя линия треугольника.
Подобие треугольников. Коэффициент подобия. Признаки подобия треугольников.
Метрические соотношения в прямоугольном треугольнике. Теорема Пифагора.
Синус, косинус, тангенс, котангенс острого угла прямоугольного треугольника. Вычисление элементов прямоугольных треугольников. Синус, косинус, тангенс и котангенс угла от 0° до 180°. Основное тригонометрическое тождество. Формулы, связывающие синус, косинус, тангенс, котангенс одного и того же угла. Формулы приведения. Теорема синусов и теорема косинусов. Вычисление элементов треугольника.
Замечательные точки треугольника: точки пересечения серединных перпендикуляров (центр окружности, описанной около треугольника), биссектрис (центр окружности, вписанной в треугольник), медиан, высот.
Четырехугольник.
Параллелограмм. Ромб, прямоугольник, квадрат. Свойства и признаки. Трапеция. Вписанные четырехугольники. Описанные четырехугольники.
Окружность и круг.
Центр, радиус, диаметр окружности и круга. Дуга, хорда. Сектор. Взаимное расположение прямой и окружности. Касательная и секущая. Величина центрального и вписанного углов. Окружность, вписанная в треугольник, и окружность, описанная около треугольника. Правильные многоугольники. Вписанные и описанные многоугольники. Длина окружности и длина дуги. Число p.
Площади плоских фигур.
Понятие о площади плоских фигур. Равновеликость и равносоставленность. Площадь прямоугольника. Площади параллелограмма, треугольника и трапеции (основные формулы). Формула площади треугольника через две стороны и угол между ними. Использование при решении задач других формул площади (формула Герона, формулы, связывающие площадь треугольника с радиусом вписанной и радиусом описанной окружностей.) Связь между площадями подобных треугольников. Отношение площадей подобных фигур. Площадь четырехугольника. Площадь описанного многоугольника. Площадь круга и площадь сектора.
Координаты и векторы.
Декартовы координаты на плоскости. Формула координат середины отрезка. Формула расстояния между двумя точками. Вектор. Длина (модуль) вектора. Координаты вектора. Равенство векторов. Операции над векторами: умножение на число, сложение, разложение, скалярное произведение. Угол между векторами. Примеры движений фигур: осевая симметрия, параллельный перенос, поворот, центральная симметрия. Понятие о гомотетии. Подобие фигур. Понятие об аксиоматическом методе построения планиметрии.
Требования к уровню подготовки выпускников основной школы
Арифметика
Уметь:
выполнять устный счет с целыми числами, обыкновенными и десятичными дробями;
переходить от одной формы записи чисел к другой, выбирая наиболее подходящую, в зависимости от конкретной ситуации; представлять десятичную дробь в виде обыкновенной и в простейших случаях обыкновенную в виде десятичной, проценты – в виде дроби и дробь – в виде процентов; применять стандартный вид числа для записи больших и малых чисел; выполнять умножение и деление чисел, записанных в стандартном виде;
изображать числа точками на координатной прямой;
выполнять арифметические действия с рациональными числами, сравнивать рациональные числа; находить значения степеней с целыми показателями и корней; находить значения числовых выражений;
округлять целые числа и десятичные дроби, находить приближенное значение числового выражения;
пользоваться основными единицами длины, массы, времени, скорости, площади, объема; выражать более крупные единицы через более мелкие и наоборот;
решать текстовые задачи, включая задачи на движение и работу, задачи связанные с отношением и с пропорциональностью величин, основные задачи на дроби и на проценты, задачи с целочисленными неизвестными.
Применять полученные знания:
для решения несложные практических расчетных задач, в том числе c использованием, при необходимости, справочных материалов и простейших вычислительных устройств;
для устной прикидки и оценки результата вычислений; проверки результата вычисления на правдоподобие, используя различные приемы; интерпретации результатов решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений.
Алгебра
Уметь:
составлять буквенные выражения и формулы по условиям задач; осуществлять подстановку одного выражения в другое, осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления; выражать из формул одни переменные через другие;
выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;
применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;
решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы уравнений (линейные и системы, в которых одно уравнение второй, а другое первой степени);
решать линейные неравенства с одной переменной и их системы; квадратные неравенства;
решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, учитывать ограничения целочисленности, диапазона изменения величин;
определять значения тригонометрических выражений по заданным значениям углов;
находить значения тригонометрических функций по значению одной из них;
определять координаты точки в координатной плоскости, строить точки с заданными координатами; решать задачи на координатной плоскости: изображать различные соотношения между двумя переменными, находить координаты точек пересечения графиков;
применять графические представления при решении уравнений, систем, неравенств;
находить значения функций, заданных формулой, таблицей, графиком, решать обратную задачу;
строить графики изученных функций, описывать их свойства, определять свойства функции по ее графику;
распознавать арифметические и геометрические прогрессии; использовать формулы общего члена и суммы нескольких первых членов.
Применять полученные знания:
для выполнения расчетов по формулам, понимая формулу как алгоритм вычисления; для составления формул, выражающих зависимости между реальными величинами; для нахождения нужной формулы в справочных материалах;
при моделировании практических ситуаций и исследовании построенных моделей (используя аппарат алгебры);
при интерпретации графиков зависимостей между величинами; переводя на язык функций и исследуя реальные зависимости;
для расчетов, включающих простейшие тригонометрические формулы;
при решении планиметрических задач с использованием аппарата тригонометрии.
Элементы логики, комбинаторики, статистики и теории вероятностей.
Уметь:
оценивать логическую правильность рассуждений, в своих доказательствах использовать только логически корректные действия, понимать смысл контрпримеров;
извлекать информацию, представленную в таблицах, на диаграммах, на графиках; составлять таблицы, строить диаграммы и графики;
решать комбинаторные задачи путем систематического перебора возможных вариантов и с использованием правила умножения;
вычислять средние значения результатов измерений;
находить частоту события;
в простейших случаях находить вероятности случайных событий, в том числе с использованием комбинаторики.
Применять полученные знания:
при записи математических утверждений, доказательств, решении задач;
в анализе реальных числовых данных, представленных в виде диаграмм, графиков;
при решении учебных и практических задач, осуществляя систематический перебор вариантов;
при сравнении шансов наступления случайных событий;
для оценки вероятности случайного события в практических ситуациях, сопоставления модели с реальной ситуацией.
Геометрия
Уметь:
распознавать плоские геометрические фигуры, различать их взаимное расположение, аргументировать суждения, используя определения, свойства, признаки;
изображать планиметрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;
распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их; иметь представления об их сечениях и развертках;
вычислять значения геометрических величин (длин, углов, площадей, объемов);
решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, соображения симметрии;
проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;
решать основные задачи на построение с помощью циркуля и линейки: угла, равного данному; биссектрисы данного угла; серединного перпендикуляра к отрезку; прямой, параллельной данной прямой; треугольника по трем сторонам;
решать простейшие планиметрические задачи в пространстве.
Применять полученные знания:
при построениях геометрическими инструментами (линейка, угольник, циркуль, транспортир);
для вычисления длин, площадей основных геометрических фигур с помощью формул (используя при необходимости справочники и технические средства).
Член-корреспондент РАН, академик Европейской Академии наук, первый заместитель председателя Научно-методического совета при Министерстве образования РФ, советник РАН
Л. Д. Кудрявцев
Академик, советник РАН, председатель Научно-методического совета при Министерстве образования РФ
С. М. Никольский
Академик РАО, Профессор МПГУ
И. И. Баврин
Профессор МГУ им. М. В. Ломоносова
В. Н. Чубариков
Научный сотрудник Математического института им. В. А. Стеклова РАН
Н. Н. Андреев
Доцент кафедры естественно-математического образования Академии повышения квалификации
А. Н. Тернопол
Учитель математики, Заслуженный учитель России
Е. А. Бунимович
Учитель математики, Заслуженный учитель России
Б. П. Пигарев
|
|
|
Рабочая программа | Июнь 28, 2012,07:13
РЕКОМЕНДАЦИИ
ПО ОЦЕНКЕ ЗНАНИЙ И УМЕНИЙ
УЧАЩИХСЯ ПО МАТЕМАТИКЕ
Опираясь на эти рекомендации, учитель оценивает знания и умения учащихся с учетом их индивидуальных особенностей.
1. Содержание и объем материала, подлежащего проверке, определяется программой. При проверке усвоения материала нужно выявлять полноту, прочность усвоения учащимися теории и умения применять ее на практике в знакомых и незнакомых ситуациях.
2. Основными формами проверки знаний и умений учащихся по математике являются письменная контрольная работа и устный опрос.
При оценке письменных и устных ответов учитель в первую очередь учитывает показанные учащимися знания и умения. Оценка зависит также от наличия и характера погрешностей, допущенных учащимися.
3. Среди погрешностей выделяются ошибки и недочеты. Погрешность считается ошибкой, если она свидетельствует о том, что ученик не овладел основными знаниями, умениями, указанными в программе.
К недочетам относятся погрешности, свидетельствующие о недостаточно полном или недостаточно прочном усвоении основных знаний и умений или об отсутствии знаний, не считающихся в программе основными. Недочетами также считаются: погрешности, которые не привели к искажению смысла полученного учеником задания или способа его выполнения; неаккуратная запись; небрежное выполнение чертежа.
Граница между ошибками и недочетами является в некоторой степени условной. При одних обстоятельствах допущенная учащимися погрешность может рассматриваться учителем как ошибка, в другое время и при других обстоятельствах — как недочет.
4. Задания для устного и письменного опроса учащихся состоят из теоретических вопросов и задач.
Ответ на теоретический вопрос считается безупречным, если по своему содержанию полностью соответствует вопросу, содержит все необходимые теоретические факты я обоснованные выводы, а его изложение и письменная запись математически грамотны и отличаются последовательностью и аккуратностью.
Решение задачи считается безупречным, если правильно выбран способ решения, само решение сопровождается необходимыми объяснениями, верно выполнены нужные вычисления и преобразования, получен верный ответ, последовательно и аккуратно записано решение.
5. Оценка ответа учащегося при устном и письменном опросе проводится по пятибалльной системе, т. е. за ответ выставляется одна из отметок: 1 (плохо), 2 (неудовлетворительно), 3 (удовлетворительно), 4 (хорошо), 5 (отлично).
6. Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии учащегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные учащемуся дополнительно после выполнения им заданий.
Критерии ошибок
К грубым ошибкам относятся ошибки, которые обнаруживают незнание учащимися формул, правил, основных свойств, теорем и неумение их применять; незнание приемов решения задач, рассматриваемых в учебниках, а также вычислительные ошибки, если они не являются опиской;
К негрубым ошибкам относятся: потеря корня или сохранение в ответе постороннего корня; отбрасывание без объяснений одного из них и равнозначные им;
К недочетам относятся: нерациональное решение, описки, недостаточность или отсутствие пояснений, обоснований в решениях
Оценка устных ответов учащихся по математике
Ответ оценивается отметкой «5», если ученик:
полно раскрыл содержание материала в объеме, предусмотренном программой и учебником,
изложил материал грамотным языком в определенной логической последовательности, точно используя математическую терминологию и символику;
правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;
показал умение иллюстрировать теоретические положения конкретными примерами, применять их в новой ситуации при выполнении практического задания;
продемонстрировал усвоение ранее изученных сопутствующих вопросов, сформированность и устойчивость используемых при отработке умений и навыков;
отвечал самостоятельно без наводящих вопросов учителя. Возможны одна - две неточности при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил по замечанию учителя.
Ответ оценивается отметкой «4», если он удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:
в изложении допущены небольшие пробелы, не исказившие математическое содержание ответа;
допущены один – два недочета при освещении основного содержания ответа, исправленные по замечанию учителя;
допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные по замечанию учителя.
Отметка «3» ставится в следующих случаях:
неполно или непоследовательно раскрыто содержание материала, но показано общее понимание вопроса и продемонстрированы умения, достаточные для дальнейшего усвоения программного материала (определенные «Требованиями к математической подготовке учащихся»);
имелись затруднения или допущены ошибки в определении понятий, использовании математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;
ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;
при знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.
Отметка «2» ставится в следующих случаях:
не раскрыто основное содержание учебного материала;
обнаружено незнание или непонимание учеником большей или наиболее важной части учебного материала;
допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.
Отметка «1» ставится, если:
ученик обнаружил полное незнание и непонимание изучаемого учебного материала или не смог ответить ни на один из поставленных вопросов по изучаемому материалу.
Оценка письменных контрольных работ учащихся
по математике
Отметка «5» ставится, если:
работа выполнена полностью;
в логических рассуждениях и обосновании решения нет пробелов и ошибок;
в решении нет математических ошибок (возможна одна неточность, описка, не являющаяся следствием незнания или непонимания учебного материала).
Отметка «4» ставится, если:
работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);
допущена одна ошибка или два-три недочета в выкладках, рисунках, чертежах или графиках (если эти виды работы не являлись специальным объектом проверки).
Отметка «3» ставится, если:
допущены более одной ошибки или более двух-трех недочетов в выкладках, чертежах или графиках, но учащийся владеет обязательными умениями по проверяемой теме.
Отметка «2» ставится, если:
допущены существенные ошибки, показавшие, что учащийся не владеет
обязательными умениями по данной теме в полной мере
Отметка «1» ставится, если:
работа показала полное отсутствие у учащегося обязательных знаний и умений по проверяемой теме или значительная часть работы выполнена не самостоятельно.
Требования к оценке:
- оценка должна быть объективной и справедливой, ясной и понятной для обучаемого,
- оценка должна выполнять стимулирующую функцию,
- оценка должна быть всесторонней.
При оценке знаний нужно учитывать:
- объем знаний по учебному предмету (вопросу),
- понимание изученного, самостоятельность суждений, убежденность в излагаемом,
- степень систематизации и глубины знаний,
- действенность знаний, умение применять их с целью решения практических задач.
При оценке навыков и умений учитываются:
- содержание навыков и умений,
- точность, прочность, гибкость навыков и умений,
- возможность применять навыки и умения на практике,
- наличие ошибок, их количество, характер и влияние на работу.
Рабочая программа | Июнь 27, 2012,07:14
Перечень контрольных работ
5 класс
Контрольная работа № 1 по теме «Натуральные числа и шкалы».
Контрольная работа № 2 по теме «Сложение и вычитание натуральных чисел».
Контрольная работа № 3 по теме «Сложение и вычитание натуральных чисел».
Контрольная работа № 4 по теме «Умножение и деление натуральных чисел».
Контрольная работа № 5 по теме «Умножение и деление натуральных чисел».
Контрольная работа № 6 по теме «Обыкновенные дроби».
Контрольная работа № 7 по теме «Обыкновенные дроби».
Контрольная работа № 8 по теме «Десятичные дроби. Сложение и вычитание дес. дробей».
Контрольная работа № 9 по теме «Умножение и деление десятичных дробей».
Контрольная работа № 10 по теме «Умножение и деление десятичных дробей».
Контрольная работа № 11 по теме «Площади и объемы».
Контрольная работа № 12 по теме «Проценты».
Контрольная работа № 13 по теме «Углы. Измерение углов».
Итоговая контрольная работа.
Алгебра, 7 класс
Контрольная работа № 1 по теме «Выражения, тождества, уравнения».
Контрольная работа № 2 по теме «Выражения, тождества, уравнения».
Контрольная работа № 3 по теме «Функции».
Контрольная работа № 4 по теме «Степень с натуральным показателем».
Контрольная работа № 5 по теме «Многочлены».
Контрольная работа № 6 по теме «Многочлены».
Контрольная работа № 7 по теме «Формулы сокращенного умножения».
Контрольная работа № 8 по теме «Формулы сокращенного умножения».
Контрольная работа № 9 по теме «Системы линейных уравнений».
Итоговая контрольная работа.
Алгебра, 8 класс
Контрольная работа № 1 по теме «Рациональные дроби».
Контрольная работа № 2 по теме «Рациональные дроби».
Контрольная работа № 3 по теме «Квадратные корни».
Контрольная работа № 4 по теме «Квадратные корни».
Контрольная работа № 5 по теме «Квадратные уравнения».
Контрольная работа № 6 по теме «Квадратные уравнения».
Контрольная работа № 7 по теме «Неравенства».
Контрольная работа № 8 по теме «Неравенства».
Контрольная работа № 9 по теме «Степень с целым показателем».
Итоговая контрольная работа.
Алгебра, 9 класс
Контрольная работа № 1 по теме «Квадратичная функция».
Контрольная работа № 2 по теме «Квадратичная функция».
Контрольная работа № 3 по теме «Уравнения и неравенства с одной переменной».
Контрольная работа № 4 по теме «Уравнения и неравенства с одной переменной».
Контрольная работа № 5 по теме «Уравнения и неравенства с двумя переменными».
Контрольная работа № 6 по теме «Арифметическая прогрессия».
Контрольная работа № 7 по теме «Геометрическая прогрессия».
Контрольная работа № 8 по теме «Элементы комбинаторики и теории вероятностей».
Итоговая контрольная работа.
Геометрия, 7 класс
Контрольная работа № 1 по теме «Начальные геометрические сведения».
Контрольная работа № 2 по теме «Треугольники».
Контрольная работа № 3 по теме «Параллельные прямые».
Контрольная работа № 4 по теме «Соотношения между сторонами и углами треугольника».
Итоговая контрольная работа.
Геометрия, 8класс
Контрольная работа № 1 по теме «Четырехугольники».
Контрольная работа № 2 по теме «Четырехугольники».
Контрольная работа № 3 по теме «Площади фигур».
Контрольная работа № 4 по теме «Подобные треугольники».
Контрольная работа № 5 по теме «Подобные треугольники».
Контрольная работа № 6 по теме «Окружность».
Итоговая контрольная работа.
Геометрия, 9 класс
Контрольная работа № 1 по теме «Векторы».
Контрольная работа № 2 по теме «Метод координат».
Контрольная работа № 3 по теме «Соотношения между сторонами и углами треугольника».
Контрольная работа № 4 по теме «Длина окружности и площадь круга».
Контрольная работа № 5 по теме «Движение».
Итоговая контрольная работа.
Рабочая программа | Июнь 26, 2012,07:15
Список литературы для обучающихся
За страницами учебника математики: Пособие для учащихся 5-6 классов средней школы. – М.: Просвещение, 1989 – 287 с.
Задачи для внеклассной работы по математике (5-11 классы) / А.В. Мерлин, Н.И. Мерлина/ Учебное пособие, 2-е изд., испр. и доп. Чебоксары: Изд-во Чувашского университета, 2002.
История математики в школе: IV-VI кл. Пособие для учителей. – М.: Просвещение, 1981. – 239 с.
Кривоногов В. В. Нестандартные задания по математике: 5-11 классы. М. Издательство «Первое сентября», 2003.
Чесноков А.С., Нешков К.И. Дидактические материалы по математике для 6 класса средней школы. М.: Просвещение, 2002-2003.
Звавич Л.И. Дидактические материалы по алгебре для 7 класса /Л.И. Звавич, Л.В.Кузнецова, С.В.Суворова. – М.: Просвещение, 2007.
Звавич Л.И. Дидактические материалы по алгебре для 8 класса /Л.И. Звавич, Л.В.Кузнецова, С.В.Суворова. – М.: Просвещение, 2007.
Макарычев Ю.Н.. Дидактические материалы по алгебре для 9 класса / Ю.Н. Макарычев, Н.Г.Миндюк, Л.Б.Крайнева. – М.: Просвещение, 2009.
Алгебра 9 класс. Пособие для самостоятельной подготовки к итоговой аттестации 2009. Ростов-на-Дону; Изд-во «Легион», 2008.
Алгебра: сб заданий для подготовки к итоговой аттестации в 9 кл./Л.В.Кузнецова, С.Б.Суворова, Е.А.Бунимович и др. – М.: Просвещение, 2007.
Шарыгин И.Ф., А.В. Шевкин. Задачи на смекалку: Учебное пособие для 5-6 кл. общеобразовательных учреждений. М.: Просвещение, 2003. – 95 с.