"Математика, друзья, абсолютно всем нужна!"
Методическая копилка | Декабрь 20, 2012,07:39
Начиная с XVII в. одним из важнейших понятий является понятие функции. Оно сыграло и поныне играет большую роль в познании реального мира.
Идея функциональной зависимости восходит к древности, она содержится уже в первых математически выраженных соотношениях между величинами, в первых правилах действий над числами, в первых формулах для нахождения площади и объема тех или иных фигур.
Те вавилонские ученые, которые 4-5 тысяч лет назад нашли для площади S круга радиусом r формулу S=3r2 (грубо приближенную), тем самым установили, пусть и не сознательно, что площадь круга является функцией от его радиуса. Таблицы квадратов и кубов чисел, также применявшиеся вавилонянами, представляют собой задания функции.
Однако явное и вполне сознательное применение понятия функции и систематическое изучение функциональной зависимости берут свое начало в XVII в. в связи с проникновением в математику идеи переменных. В “Геометрии” Декарта и в работах Ферма, Ньютона и Лейбница понятие функции носило по существу интуитивный характер и было связано либо с геометрическими, либо с механическими представлениями: ординаты точек кривых - функции от абсцисс (х); путь и скорость - функции от времени (t) и тому подобное.
Четкого представления понятия функции в XVII в. еще не было, путь к первому такому определению проложил Декарт, который систематически рассматривал в своей “Геометрии” лишь те кривые, которые можно точно представить с помощью уравнений, притом преимущественно алгебраических. Постепенно понятие функции стало отождествляться таким образом с понятием аналитического выражения - формулы.
Явное определение функции было впервые дано в 1718 г. одним из учеников и сотрудников Лейбница, выдающимся швейцарским математиком Иоганном Бернулли: “Функцией переменной величины называют количество, образованное каким угодно способом из этой переменной величины и постоянных”.
Леонард Эйлер во “Введении в анализ бесконечных” (1748) примыкает к определению своего учителя И. Бернулли, несколько уточняя его. Определение Л. Эйлера гласит: “Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого количества и чисел или постоянных количеств”. Так понимали функцию на протяжении почти всего XVIII в. Даламбер, Лагранж и другие видные математики. Что касается Эйлера, то он не всегда придерживался этого определения; в его работах понятие функции подвергалось дальнейшему развитию в соответствии с запросами математической науки. В некоторых своих произведениях Л. Эйлер придает более широкий смысл функции, понимая ее как кривую, начертанную “свободным влечением руки”. В связи с таким взглядом Л. Эйлера на функцию между ним и его современниками, в первую очередь его постоянным соперником, крупным французским математиком Даламбером, возникла большая полемика вокруг вопроса о возможности аналитического выражения произвольной кривой и о том, какое из двух понятий (кривая или формула) следует считать более широким. Так возник знаменитый спор, связанный с исследованием колебаний струны.
В “Дифференциальном исчислении”, вышедшем в свет в 1755 г, Л. Эйлер дает общее определение функции: “Когда некоторые количества зависят от других таким образом, что при изменении последних и сами они подвергаются изменению, то первые называются функциями вторых”. “Это наименование, - продолжает далее Эйлер, - имеет чрезвычайно широкий характер; оно охватывает все способы, какими одно количество определяется с помощью других”. На основе этого определения Эйлера французский математик С. Ф. Лакруа в своем “Трактате по дифференциальному и интегральному исчислению”, опубликованном в 1797 г., смог записать следующее: “Всякое количество, значение которого зависит от одного или многих других количеств, называется функцией этих последних независимо от того, известно или нет, какие операции нужно применить, чтобы перейти от них к первому”.
Как видно из этих определений, само понятие функции фактически отождествлялось с аналитическим выражением. Новые шаги в развитии естествознания и математики в XIX в. вызвали и дальнейшее обобщение понятия функции.
Большой вклад в решение спора Эйлера, Даламбера, Д. Бернулли и других ученых XVIII в. по поводу того, что следует понимать под функцией, внес французский математик Жан Батист Жозеф Фурье (1768-1830), занимавшийся в основном математической физикой. В представленных им в Парижскую Академию наук в 1807 и 1811 гг., работах по теории распространения тепла в твердом теле Фурье привел и первые примеры функций, которые заданы на различных участках различными аналитическими выражениями.
В 1834 г. в работе “Об исчезании тригонометрических строк” Н. И. Лобачевский, развивая вышеупомянутое эйлеровское определение функции в 1755 г., писал: “Общее понятие требует, чтобы функцией от х называть число, которое дается для каждого х и вместе с х постепенно изменяется. Значение функции может быть дано или аналитическим выражением, или условием, которое подает средство испытывать все числа и выбирать одно из них; или, наконец, зависимость может существовать и оставаться неизвестной... Обширный взгляд теории допускает существование зависимости только в том смысле, чтобы числа, одни с другими в связи, принимать как бы данными вместе”.
Еще до Лобачевского аналогичная точка зрения на понятие функции была высказана чешским математиком Б. Больцано. В 1837 г. немецкий математик П. Лежен-Дирихле так сформулировал общее определение понятия функции: “у есть функция переменной х (на отрезке a £ х £ b), если каждому значению х (на этом отрезке) соответствует совершенно определенное значение у, причем безразлично, каким образом установлено это соответствие - аналитической формулой, графиком, таблицей либо даже просто словами”.
Таким образом, примерно в середине XIX в. после длительной борьбы мнений понятие функции освободилось от уз аналитического выражения, от единовластия математической формулы. Главный упор в новом общем определении понятия функции делается на идею соответствия.
Во второй половине XIX в. после создания теории множеств в понятие функции, помимо идеи соответствия, была включена и идея множества. Таким образом, в полном своем объеме общее определение понятия функции формулируется следующим образом: если каждому элементу х множества А поставлен в соответствие некоторый определенный элемент у множества В, то говорят, что на множестве А задана функция у = f (х), или что множество А отображено на множество В. В первом случае элементы х множества А называют значениями аргумента, а элементы у множества В - значениями функции; во втором случае х - прообразы, у - образы. В современном смысле рассматривают функции, определенные для множества значений х, которые, возможно, и не заполняют отрезка a £ x £ b, о котором говорится в определении Дирихле. Достаточно указать, например, на функцию-факториал y = n !, заданную на множестве натуральных чисел. Общее понятие функции применимо, конечно, не только к величинам и числам, но и к другим математическим объектам, например к геометрическим фигурам. При любом геометрическом преобразовании (отображении) мы имеем дело с функцией.
Общее определение функций по Дирихле сформировалось после длившихся целый век дискуссий в результате значительных открытий в физике и математике в XVIII и первой половине XIX в. Дальнейшее развитие математической науки в XIX в. основывалось на этом определении, ставшим классическим. Но уже с самого начала XX в. это определение стало вызывать некоторые сомнения среди части математиков. Еще важнее была критика физиков, натолкнувшихся на явления, потребовавшие более широкого взгляда на функцию. Необходимость дальнейшего расширения понятия функции стала особенно острой после выхода в свет в 1930 г. книги “Основы квантовой механики” Поля Дирака, крупнейшего английского физика, одного из основателя квантовой механики. Дирак ввел так называемую дельта-функцию, которая выходит далеко за рамки классического определения функции. В связи с этим советский математик Н. М. Гюнтер и другие ученые опубликовали в 30-40-х годах нашего столетия работы, в которых неизвестными являются не функции точки, а “функции области”, что лучше соответствует физической сущности явлений.
В общем виде понятие обобщенной функции было введено французом Лораном Шварцем. В 1936 г. 28-летний советский математик и механик Сергей Львович Соболев первым рассмотрел частный случай обобщенной функции, включающей и дельта-функцию, и применил созданную теорию к решению ряда задач математической физики. Важный вклад в развитие теории обобщенных функций внесли ученики и последователи Л. Шварца - И. М. Гельфанд, Г. Е. Шилов и другие.
Прослеживая исторический путь развития понятия функции невольно приходишь к мысли о том, что эволюция еще далеко не закончена и, вероятно, никогда не закончится, как никогда не закончится и эволюция математики в целом. Новые открытия и запросы естествознания и других наук приведут к новым расширениям понятия функции и других математических понятий. Математика - незавершенная наука, она развивалась на протяжении тысячелетий, развивается в нашу эпоху и будет развиваться в дальнейшем.
Обоснование функциональной линии как ведущей для школьного курса математики — одно из крупнейших достижений современной методики. Однако реализация этого положения может быть проведена многими различными путями; многообразие путей вызвано фундаментальностью самого понятия функции.
Для того чтобы составить представление об этом многообразии, сравним две наиболее резко различающиеся методические трактовки этого понятия; первую мы назовем генетической, а вторую — логической.
Генетическая трактовка понятия функции основана на разработке и методическом освоении основных черт, вошедших в понятие функции до середины XIX в. Наиболее существенными понятиями, которые при этой трактовке входят в систему функциональных представлений, служат переменная величина, функциональная зависимость переменных величин, формула (выражающая одну переменную через некоторую комбинацию других переменных), декартова система координат на плоскости.
Генетическое развертывание понятия функции обладает рядом достоинств. В нем подчеркивается «динамический» характер понятия функциональной зависимости, легко выявляется модельный аспект понятия функции относительно изучения явлений природы. Такая трактовка естественно увязывается с остальным содержанием курса алгебры, поскольку большинство функций, используемых в нем, выражаются аналитически или таблично.
Генетическая трактовка понятия функции содержит также черты, которые следует рассматривать как ограничительные. Одним из очень существенных ограничений является то, что переменная при таком подходе всегда неявно (или даже явно) предполагается пробегающей непрерывный ряд числовых значений. Поэтому в значительной степени понятие связывается только с числовыми функциями одного числового аргумента (определенными на числовых промежутках). В обучении приходится, используя и развивая функциональные представления, постоянно выходить за пределы его первоначального описания.
Логическая трактовка понятия функции исходит из положения о том, что строить обучение функциональным представлениям следует на основе методического анализа понятия функции в рамках понятия алгебраической системы. Функция при таком подходе выступает в виде отношения специального вида между двумя множествами, удовлетворяющего условию функциональности. Начальным этапом изучения понятия функции становится вывод его из понятия отношения.
Реализация логического подхода вызывает необходимость иллюстрировать понятие функции при помощи разнообразных средств; язык школьной математики при этом обогащается. Помимо формул и таблиц, здесь находят свое место задание функции стрелками, перечислением пар, использование не только числового, но и геометрического материала; геометрическое преобразование при таком подходе оказывается возможным рассматривать как функцию. Обобщенность возникающего понятия и вытекающие отсюда возможности установления разнообразных связей в обучении математике — основные достоинства такой трактовки.
Однако выработанное на этом пути общее понятие оказывается в дальнейшем связанным главным образом с числовыми функциями одного числового аргумента, т. е. с той областью, в которой оно гораздо проще формируется на генетической основе.
Таким образом, если генетический подход оказывается недостаточным для формирования функции как обобщенного понятия, то логический обнаруживает определенную избыточность. Отметим, что различия в трактовках функции проявляются с наибольшей резкостью при введении этого понятия. В дальнейшем изучении функциональной линии различия постепенно стираются, поскольку изучается в курсах алгебры и начал анализа не само понятие функции, а в основном конкретно заданные функции и классы функций, их разнообразные приложения в задачах естествознания и общественного производства.
В современном школьном курсе математики в итоге длительных методических поисков в качестве ведущего был принят генетический подход к понятию функции. Одновременно учитывается все ценное, что можно извлечь из логического подхода. Исходя из этого при формировании понятий и представлений, методов и приемов в составе функциональной линии система обучения строится так, чтобы внимание учащихся сосредоточивалось, во-первых, на выделенных и достаточно четко разграниченных представлениях, связанных с функцией, и, во-вторых, на установлении их взаимодействия при развертывании учебного материала. Иными словами, в обучении должна быть выделена система компонентов понятия функции и установлена связь между ними. В эту систему входят такие компоненты:
- представление о функциональной зависимости переменных
величин в реальных процессах и в математике;
- представление о функции как о соответствии;
- построение и использование графиков функций, исследование функций;
- вычисление значений функций, определенных различными
способами.
В процессе обучения алгебре все указанные компоненты присутствуют при любом подходе к понятию функции, но акцент может быть сделан на одном из них. Как только что мы отметили, функциональный компонент является основой введения и изучения понятия функции. На этой основе при организации работы над определением вводятся и другие компоненты, проявляющиеся в различных способах задания функциональной зависимости и ее графического представления.
Рассмотрим теперь взаимодействие компонентов на примере, относящемся к формированию прикладных умений и навыков.
Пример 1. С мороза в комнату внесли банку со льдом и стали наблюдать за изменением температуры вещества в банке: лед постепенно таял, когда он растаял весь, температура воды стала повышаться, пока не сравнялась с температурой в комнате. На рисунке изображен график зависимости температуры от времени.
Ответьте на вопросы: а) Какова исходная температура льда? б) За какое время температура льда повысилась до 0 °С? в) Какая температура в комнате? г) Укажите область, на которой определена функция, промежутки ее возрастания, промежуток, на котором она постоянна.
В этом примере необходимо использовать все компоненты, кроме последнего, вычислительного компонента. Процесс с самого начала представлен как функциональная зависимость. В вопросах требуется уточнить характер этой зависимости (вопрос г)), выяснить соответствующие значения функции и аргумента в определенные моменты процесса (вопросы а) и в)).
Понятие функции, в системе формирования которого должны присутствовать такие задания, сразу выступает в курсе математики как определённая математическая модель, что и является мотивировкой для его углублённого изучения.
Методическая копилка | Декабрь 05, 2012,07:09
Думаю, каждый учитель не раз задавал себе вопрос: почему снижается учебная мотивация школьников по мере их пребывания в школе? Все дети, когда идут в школу, хотят учиться, почему для ребёнка, генетически предрасположенного к учению, процесс обучения превращается в трудную, малопривлекательную работу?
Таким образом, противоречие между высокими требованиями к качеству знаний учащихся со стороны родителей, социальных заказчиков, с одной стороны, и, снижение интереса к учебе, в том числе и на уроках математики, с другой, предопределило для меня использование проектного обучения на своих уроках. Проанализировав ситуацию в классах, где веду математику, пришла к выводу: Математика начинается вовсе не со счета, что кажется очевидным, а с…загадки, проблемы. Чтобы у учащегося развивалось творческое мышление, необходимо, чтобы он почувствовал удивление и любопытство, повторил путь человечества в познании. Только через преодоление трудностей, решение проблем, ребенок может войти в мир творчества.
Для чего нужен метод проектов?
• Научить учащихся самостоятельному, критическому мышлению.
• Размышлять, опираясь на знание фактов, закономерностей науки, делать обоснованные выводы.
• Принимать самостоятельные аргументированные решения.
• Научить работать в команде, выполняя разные социальные роли.
Если ученик сумеет справиться с работой над учебным проектом, можно надеяться, что в настоящей взрослой жизни он окажется более приспособленным: сумеет планировать собственную деятельность, ориентироваться в разнообразных ситуациях, совместно работать с различными людьми, т.е. адаптироваться к меняющимся условиям.
Необходимость прогрессивных образовательных технологий – это объективное требование, и поэтому, как правило, каждый учитель со временем их вырабатывает. И здесь можно пойти двумя путями:
1) создать собственную технологию;
2) перенять то, что открыто другими и адаптировать для себя и своих учеников.
Проект – это «пять П».
1.Наличие проблемы. Работа над проектом всегда направлена на разрешение конкретной проблемы. Нет проблемы – нет деятельности. Метод проектов можно использовать в учебном процессе для решения различных небольших проблемных задач в рамках одного-двух уроков (мини-проекты или краткосрочные проекты). В этом случае тема проекта связана с темой урока или применением данной темы в различных жизненных ситуациях.
К примеру, для решения крупных задач (проблем) по математике, сложных для понимания вопросов использую крупные проекты, которые в основном выполняются во внеурочной деятельности. Данные проекты в основном направлены на углубление и расширение знаний по математике. Это так называемые среднесрочные проекты (макро-проекты), применяемые в основном во внеурочных формах работы (кружки, факультативы, элективные курсы).
2.Обязательное планирование действий. В ходе разбора и обсуждения проекта вырабатывается план совместных действий ученика и учителя. Создаётся банк идей и предложений. На протяжении всей работы учитель помогает в постановке цели, корректирует работу, но ни в коем случае не навязывает ученику своё видение решения задачи.
Участников проекта я разбиваю на группы от 3 до 5 человек в зависимости от количества учеников в классе. В каждой группе распределяются роли: например, генератор идей, презентатор, дизайнер, критик, энциклопедист, секретарь и др.
3.Поиск информации- обязательное условие каждого проекта. Большую поддержку в этом оказывают Интернет ресурсы. Найденная информация, обрабатывается, осмысливается. После совместного обсуждения выбирается базовый вариант. Учитель корректирует последовательность технологических операций в каждой работе.
4.Результат работы – продукт. Учащиеся, выбрав посильные технологии для создания своей работы на компьютере, уточняют, анализируют собранную информацию, формулируют выводы. Учитель выступает в роли научного консультанта. Результаты выполненных проектов должны быть, что называется, «осязаемыми». Если это теоретическая проблема, то конкретное ее решение, если практическая − конкретный результат, готовый к использованию (на уроке, в школе, в реальной жизни).
В зависимости от места, где применяется метод, могут быть и разные продукты. Например, продуктом самостоятельной деятельности учащихся на уроке, может быть опорный конспект, памятка по методам решения задач, сборник ключевых задач по изучаемой теме и др. Ученики 5-6 классов сочиняют сказку или детективную историю по изучаемой теме.
Прикладной проект может быть связан с применением математического аппарата в повседневной жизни. Например расчет минимального количества необходимых продуктов и их стоимости, используемых семьей на протяжении месяца; расчет погашения банковского кредита и др.
Результатами работы над проектами во внеурочной деятельности становятся рефераты, эссе, электронные пособия, математические модели, мультимедийные продукты и т. д.
5. Презентация результатов- представление готового продукта. Иными словами, осуществление проекта требует на завершающем этапе презентации продукта и защиты самого проекта, которую провожу в форме конкурса, выставки, презентации.
Приобщение учащихся к проектной деятельности с использованием компьютерно-информационных технологий позволяет наиболее полно определять и развивать интеллектуальные и творческие способности.
Особенностью учебного процесса с применением компьютерных средств является то, что центром деятельности становится учение, а учитель выступает в роли помощника, консультанта, поощряющего оригинальные находки, стимулирующего активность, инициативу, самостоятельность.
Основная задача школы состоит не только в том, чтобы дать учащимся глубокие знания, но в том, чтобы научить их самостоятельно решать возникающие вокруг него проблемы и, главное, чтобы учение стало для ребят увлекательным, радостным и интересным делом.